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An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian
network is presented. This structure, which is defined based on the Apollonian packing problem, has been
explored both as a complex network and as a substrate on the top of which physical models can be defined. The
Schrödinger equation of the model, which includes only nearest-neighbor interactions, is written in a matrix
formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the
Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spec-
trum, which is characterized by a very large degeneracy. The 2� /3 rotation symmetry of the network and large
number of equivalent sites are reflected in all eigenstates, which are classified according to their parity.
Extended and localized states are identified by evaluating the participation rate. Results for other two nonuni-
form models on the Apollonian network are also presented. In one case, interaction is considered to be
dependent of the node degree, while in the other one random on-site energies are considered.

DOI: 10.1103/PhysRevB.78.214202 PACS number�s�: 71.23.An, 73.20.At, 73.20.Fz, 89.75.Hc

I. INTRODUCTION

Modeling physical systems on substrates without transla-
tion invariance provides useful insights for the understanding
of disordered systems.1 Quite recently, the rapid develop-
ment of complex network theory2 has motivated the investi-
gation of physical models on such substrates for the purpose
of identifying new aspects that may stem from geometrical
constructs.3,4 Indeed, the characterization of their physical
properties has shown that new thermodynamic, magnetic,
and transport features do emerge. In several situations,5 they
can become quite distinct from those obtained by other dis-
ordered models.

The Apollonian network �AN� �Ref. 6� appears in this
scenario as an interesting structure in the sense that it shares
several properties of complex networks, but on the other
hand it is defined by strict geometrical rules. This particular
feature makes it possible to explore scale-invariance proper-
ties together with numerical methods in the investigation of
distinct models. Its specific geometric features induce the
emergence of nontypical behavior in thermodynamic and
magnetic properties of spin systems,7,8 avalanche distribution
in sand pile models,9 and so on.

The recent creation of a synthetic nanometer-scale Sier-
pinski hexagonal gasket, a self-similar fractal
macromolecule,10 has highly motivated the area of scale-
invariant networks. This perspective raises the question
about electronic systems on these networks.

The purpose of this work is to investigate tight-binding
electronic models on the AN, focusing on the localized vs
extended nature of their wave functions. This characteriza-
tion follows a previous analysis of the properties of the ei-
genvalue spectrum of the adjacency matrix �AM� of the
AN.11 The AM spectrum is a very important network signa-
ture and, as such, its properties have been detailed explored
within graph theory. In particular, great attention has been
devoted to understanding isospectral graphs that are not
isomorphic.12,13

As we will show, the Hamiltonian of the uniform tight-
binding model can be written in terms of the AM, so that the
energy eigenvalues are proportional to those of the AM. The
previous identification of the structure of the spectrum de-
tailed the presence of several distinct classes and highly de-
generated subsets. The characterization of the localization
properties of the wave function, based on the evaluation of
the participation rate of each state, follows the classification
scheme of different sets in the AM spectrum.

The paper is organized as follows. In Sec. II, we discuss
the main features of the AN. We also introduce the tight-
binding model and its matrix. We also indicate how the par-
ticipation rate has been used to quantify the localization
properties of the eigenstates. Section III brings a brief review
of the most important properties of the uniform eigenvalue
spectrum. Results for the three different models are pre-
sented in Sec. IV. Finally, Sec. V closes the paper with a
summary of our main important results.

II. TIGHT-BINDING MODELS ON AN

ANs �Refs. 6 and 14� follow from the old problem of
optimally filling a compact domain in the Euclidean plane by
circles.15 The solution to this problem requires the successive
addition of maximal tangent circle into the empty regions
bounded by three previously placed circles. At a given gen-
eration n, the network ANn is constructed by establishing a
connection between the centers of all pairs of tangent circles.
The solution to the packing problem requires the determina-
tion of the center and radius of each placed circle. For the
AN, however, these details are not required, and we just need
to assign the pairs of nodes that are connected. In this work,
we consider the simplest situation, which arises by consider-
ing, at the zeroth generation n=0, three tangent circles with
the same radius. The centers of which occupy the corners of
a equilateral triangle �see Fig. 1�. The number of sites N�n�
on the network increases according to N�n�= �3n+5� /2,
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while the number of edges B�n� depends on n as B�n�
= �3n+1+3� /2. In the limit n→�, B�n� /N�n�→3, so that each
node has, in the average, six neighbors.

The resulting AN shares several properties with other
classes of complex network, including being scale free �the
distribution P�k� of node degree k is a power law�, small
world �the mean minimal path ���� log N�, and hierarchical
�the clustering coefficient of individual nodes c�k� has a
power law dependence on k�. Nevertheless, it has own
features16 that preclude being put into the set of networks
generated by known algorithms such as those proposed by
Watts and Strogatz17 and Barabasi and Albert.18

The model considers that an electron is primarily bound
to a network node i with on-site energy �i, but it is also
allowed to hop from i to a neighboring site j one with a
probability amplitude Vi,j =Vj,i, resulting from the overlap
integral involving the two wave functions and interaction
potential. For a given n, the corresponding Hamiltonian is
written as

Hn = �
i=1

N�n�

	i��i�i	 + �
�i,j�

	i�Vi,j�j	 , �1�

where 	i� represents a Wannier function for an electron at
position i and �i , j� denotes pairs of sites that are first neigh-
bors.

The Hamiltonian �1� can be written in a matrix form,
where the diagonal elements Hi,i=�i, while off-diagonal ele-
ments Hi,j are set to Vi,j or 0, depending on whether sites i
and j are neighbors or not. The AN sites are numbered ac-
cording to a previously introduced scheme, which is repro-
duced in Fig. 1 for n=0, 1, and 2. When we go from gen-
eration n to n+1, the whole nth lattice is first squeezed into
the region limited by two outer vertices and the site at the
geometrical center of the triangle. After this first step, two
identical copies of the squeezed lattice, rotated by 2� /3 and
4� /3, are added to the regions that have been emptied. In
this numbering, two of the outer vertices always take the
numbers 1 and 2, while the third one assumes the number
N�n� for generation n. As a consequence, the central node
receives always the number N�n−1�. The matrix representa-
tion of H2 is

H2 =

�1 V1,2 V1,3 V1,4 V1,5 0 V1,7

V2,1 �2 V2,3 V2,4 0 V2,6 V2,7

V3,1 V3,2 �3 V3,4 0 0 0

V4,1 V4,2 V4,3 �4 V4,5 V4,6 V4,7

V5,1 0 0 V5,4 �5 0 V5,7

0 V6,2 0 V6,4 0 �6 V6,7

V7,1 V7,2 0 V7,4 V7,5 V7,6 �7

� . �2�

The simple uniform model corresponds to setting �i=�0 , ∀ i
and Vi,j =V0 , ∀ �i , j�. If we let E� to be the eigenvalues of H,
we can define normalized energies E= �E�−�0� /V0, which
can also be directly obtained by rewriting Eq. �2� and setting
�0=0 and V0=1. In terms of these variables, matrix �2� co-
incides exactly with the AM of the AN. Thus, the eigenener-
gies of the homogeneous tight-binding model can be directly
obtained from the AM spectrum discussed previously. For
the sake of a simple notation, we will always refer, in the
forthcoming discussion, to the redefined values of E. With
the exception of the random on-site energy model, we restrict
ourselves to investigate the situation in which �0=0.

Nonuniform models can be defined by choosing other val-
ues either for the self-energies or the hopping integrals. In
this work we consider a family of models defined by �i

=0, ∀ i and V�i , j�=1 /z�. Here, z= �ki+kj� /2 is the average
value of the node degrees k, and the value of � selects a
particular element of the set. The uniform model corresponds
to setting �=0. Finally, the third model that aims to investi-
gate the existence of Anderson transition19 in AN is defined
by setting V�i , j�=1 for neighboring sites, while �i are chosen
according to a probability distribution function.

The solution to the Schrödinger equation H	�E�=E	�E�
can be written in the basis of Wannier states, i.e., 	�E�
=�i=1

N aE,i	i�. The site coefficients aE,i are the components of
the normalized eigenvector corresponding to the eigenvalue
E, which are obtained from the numerical diagonalization of
the Hamiltonian matrices. The knowledge of the vector com-
ponents ai and the possibility of evaluating it as a function of
the subsequent generations n suggest the use of the partici-
pation ratio � to characterize the degree of localization of the
electronic states. For normalized states, this often used mea-
sure is defined by

n=0

2

1 3 4

n=1

2

1

3 4 6

n=2

2

1
5

3

7
(b)(a) (c)

FIG. 1. Generations n=0, 1, and 2 of AN. The adopted site numbering is the one introduced in Ref. 7.
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�E,n =
1

�
i=1

N�n�

	aE,i	4
. �3�

It can assume values in the range �1,N�, which correspond,
respectively, to the extreme situations of completely local-
ized �aE,i=1 for one single value of i� and extended states
�aE,i=1 /�N , ∀ i�. Thus, it provides both an estimate for the
localization length �, as indications for extended states, for
which � should scale with N�n�. Since the model is defined in
the limit n→�, the localized or extended character of the
Apollonian states of the infinite system can be inferred from
the behavior of �E,n as a function of n.

Let us recall that the eigenstates of Hn corresponding to a

degenerate eigenvalue Ē are not univocally determined, as
any linear combination of them is still a solution of the secu-
lar equation. Thus, it is inevitable that different algorithms
used to evaluate the eigenvectors lead to different values of
�E,n. By performing numerical evaluation of all eigenvectors
to a degenerated eigenvalue with two distinct routines, we
find two different sets of eigenvectors and values of �E,n.
However, the localization properties remain the same.

III. SPECTRUM PROPERTIES

The evaluation of the eigenvalues must be performed with
the help of numerical algorithms. The spectrum of the uni-
form model has been characterized in a detailed way. In this
particular case, the presence of many eigenvalues with high
degree of degeneracy, and the recurrent presence of the same
eigenvalues in the successive increasing values of n, makes it
possible to present a classification scheme for the eigenval-
ues E. According to it, for any value of n�2, we can cast the
eigenvalues into three classes C1

n ,C2
n ,C3

n. They comprise, re-
spectively, nondegenerated, twofold, and more than twofold
degenerated eigenvalues.

A total of D1
n=2n−1+1 and D2

n=2n eigenvalues are found
in the classes C1

n and C2
n. Eigenvalues in these classes do not

appear again for any other value of n. However, for a given
value of n, the eigenvalues remain in the proximity of the
corresponding ones in the former generation of n�=n−1. The
total of remaining eigenvalues in the class is D3

n= 3
2 �3n−1

−2n+1�. As the total number of eigenvalues increases with
3n, the relative number of states in C1

n and C2
n become van-

ishingly small as n→�.
Contrary to what is observed with the two first classes,

eigenvalues in C3
n are recurrent; i.e., once they are present in

the spectrum for a given value of n=q, they will be found
again for any n	q. Moreover, their degeneracy increases
with n in a very precise way. Therefore, the number of
emerging eigenvalues at a given generation together with
their degeneracy can be quantified according to the following
scheme: the number of degenerate eigenvalues that emerge at
generation q is 2q−3; at generation n, the degeneracy of any
eigenvalue that first appeared at generation q is dn,q

= 3n−q+2−3
2 . Note that dq,q=3 always. The first C3 eigenvalues

emerging at q=3 and 4 are, respectively, 0 and 
�3. The
large degeneracy indicates that the characteristic polynomial

is highly factorized. Nevertheless, this relationship does not
help much in finding exact roots of the polynomials when
q�5.

IV. RESULTS

A. Symmetry properties

We have scrutinized all eigenstates until n=9, finding
clear relationships among several of their properties and the
classes to which the corresponding eigenvalue belongs. The
most direct one refers to the way the states reflect the net-
work invariance by 2� /3 rotations around the central node.
Let us define a paritylike property P based on the value of
�i=1

N aE,i, so that P=odd �even� when this sum is zero �non-
zero�. We have found that, for any P=even state, all sets of
three equivalent sites, i.e., the three sites that are mapped
onto one another by rotation of the network by 2� /3 and
4� /3 around the central site, share exactly the same ampli-
tude aE. The same amplitude is found for all sites that are
mapped onto one another by inversion operations over the
three bisectrices of the original triangle. All C1

n states are
even and, conversely, all C2

n and C3
n states are odd.

However, we find two kinds of P=odd states, depending
on whether they belong to the C2

n or C3
n class. Irrespective of

the particular class, the amplitude at the central site for any
odd state vanishes identically, i.e., aE,i=N�n−1�=0.

In Figs. 2�a�–2�c� we illustrate some features of three
states when n=2. They correspond, respectively, to the larg-
est eigenvalue E7, which always belongs to Cn

�1�, and to the
second largest twofold degenerated eigenvalue E5 ,E6
=−��5+1� /2, which is in the class C2

�2�. As exemplary shown
for n=2, the largest eigenvalue state has only positive com-
ponents �absence of nodes�. The two states corresponding to
E5,6 have odd parity and are clearly orthogonal.

The states in C2
n are such that, for each set of three equiva-

lent sites �by rotation of the network by 2� /3 and 4� /3
around the central site�, the sum of the amplitudes ai is zero.
However, no inversion symmetry, as found for even states, is
observed.

The states in C3
n do not have the same general rotation

symmetry around the central site but a large number of local
2� /3 rotational symmetries. Indeed, we found that, if the
corresponding eigenvector appeared for the first time in C3

q,
at generation n it contains N�n−q+2� nodes with zero am-
plitudes, including the central one. For instance, when n=4,
all 12 states corresponding to E=0, which appears for the
first time when n=q=3, have N�3�=16 sites with vanishing
amplitude. The three states corresponding to E=�3, which
appears for n=q=4, have seven sites with vanishing ampli-
tudes. The sites with vanishing amplitudes are exactly those
sites that are present in the network at generation n−q+2.
Further, each set of three sites that appears around these zero
amplitude sites at generation n−q+3 has the property that
the sum to the corresponding amplitudes is zero. This is il-
lustrated in the Fig. 2�d�, when n=q=3, for a state with
eigenvalue E=0.

B. Localization properties

The localization properties of the quantum states were
evaluated with the help of Eq. �3�. The general features of
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the results are displayed in Fig. 3 where, in order to better
compare the values of � for different values of n, we draw
the value of ��i� /N�n� for individual states i. As the spectrum
is highly degenerated, the label i is chosen to be, in the first
place, an increasing function of the energy. Then, within a
degenerated level, the states are labeled according to increas-
ing values of �. Since the horizontal axis has also been scaled
to 1 by dividing i /N, the graphs show a recurrent form, with
the presence of ever fine details as the value of n increases.

So, despite the shown patterns seem quite irregular, it is
possible to identify large windows where the value of � /N
increases monotonically. These structures correspond to the

highly degenerate levels of C3
n class, where the individual

states have been classified according to increasing values of
�. This behavior makes it clear that the states corresponding
to degenerate levels have own particular features.

The behavior of the states corresponding to the classes C1
n

and C2
n is much difficult to be perceived in Fig. 3, as such

states are immersed into the overwhelmingly larger number
of C3

n states. However, the behavior of some of them, at
specific positions in the spectrum, can be identified. For in-
stance, the states corresponding to smallest and largest value
of E, both in C1

n ∀n, have very low values of �. On the other
hand, C1

n and C2
n states that precede the large C3

n windows,
like those just before E=0 and �3, are characterized by quite
large values of �.

In Figs. 4�a� and 4�b�, we plot the absolute value of local
amplitudes for two n=7 states: i=125 and 244, both with
energy E=0 and, respectively, smallest and largest value of
�. It is possible to visualize that the state with smallest value
of � is characterized by a few large amplitude spikes, distin-
guishing themselves from the much lower amplitudes in the
remaining sites. This picture contrasts with that for i=243,
where the amplitudes are more homogeneously distributed
over all sites, evidencing properties of an extended state.
Figure 4�c�, for the C2

n state i=286, with energy E
1.0495,
shows a pattern similar to that in Fig. 4�b�, in agreement with
the indication of an extended state �� /N=0.4181�.

To characterize the state properties in the n→� limit, it is
necessary to follow the behavior of � with n. As discussed
before, truly extended states obey a linear dependence be-
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FIG. 2. �Color online� Illustration of parity properties for three eigenstates at generation n=2. Green �light gray� circles indicate AN
nodes, while red �dark gray� stars indicate corresponding wave-function amplitude. �a� Even state corresponding to the largest value E in
class C1

2. �b� and �c� Odd states corresponding to a twofold degenerate eigenvalue in class C2
2.
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N = 367
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FIG. 3. �Color online� Dependence of �i /N with respect to i /N
for n=5 �black dots�, 6 �red �dark gray� dashes�, and 7 �green �light
gray� solid line�. The states are labeled by increasing values of E
and, within each degenerate level, by increasing values of �.
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tween ��n� and N�n�. However, as the number of states in-
creases with the size of the system, a criterion must be de-
fined to make the correspondence among the states in
different generations n. For states in C3

n, such correspondence
is easier to be made, as the eigenvalues in one generation
will be present in all further generations. As this does not
happen for eigenvalues in C1

n and C2
n, we will compare them

by their relative positions to the eigenvalues in the class C3
n.

In Fig. 5, we show the dependence of � on the number of
sites N for some selected states, from which it is possible to
evaluate the exponent � in ��N�. In Fig. 5�a�, the two states
with E=0 and smallest and largest values of � are character-
ized by �=0.40 and 0.92, respectively. The indication of
localized and extended character confirms the overall picture
shown in Fig. 4. The result in Fig. 5�b�, for the correspond-
ing states of E=−�3, reveals a much smaller variation in the
value of �� �0.805,0.897� for the states corresponding to
extreme values of �. Similar results are obtained for other
values of E in C3

n, with a clear indication that, despite the
occurrence of some localized states, the results in this class
have a grater tendency of containing states with extended
character.

States of the C1
n class can display both localized and ex-

tended characters as indicated by the sequence of values of �
for the largest and smallest eigenvalues and for the state with
largest value of �. While small slopes �=0.051 obtained for
the sequence of smallest eigenvalues �Fig. 6�c�� indicate lo-
calization, the state with E
1.239, characterized by �
1,

which maximizes the value of � in all generations, shows the
opposite extended pattern. Similarly, states in class C2

n can
display both localized and extended characters, as shown in
Fig. 5�d�. In the first one, the behavior of � indicates local-
ized nature for the pair of states corresponding to the second
smallest eigenvalue, while extended properties are obtained
for the pairs of states with E
0.72. In both cases, small
values of � hint at a strong localization character. On the
other hand, extended properties are found for the series of
eigenvalues that precede the eigenvalue E=�3.

Since the relative number of states in classes C1
n and C2

n

decreases with n, let us concentrate on the properties of C3
n

states. A further characterization of their localization charac-
ter can be provided by taking the average values of � for the
states with the same eigenvalue. For this purpose, for each
value of n, the states to each degenerated eigenvalue have
been divided into ten groups according to increasing values
of �. Then, as in Fig. 5, we draw in Fig. 6�a� ���n�� as a
function of N�n�. The values of � for each subset show,
consistently, a tendency to accumulate at � in the order of
1.0. Another way to confirm the result is to draw the partici-
pation ratio probability distribution P�� /N� as a function of
� /N �see Fig. 6�b��. For three increasing generations, the
position of the peaks of P indicates that the values of � for
E=0 states increase linearly with the size of the system, so
that their extended nature is preserved in the limit of infinite
system. These features support our claims of an overwhelm-
ing extended character of states in the uniform model.
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FIG. 4. �Color online� Absolute value of wave amplitudes for three states when n=7 indicated by red �dark gray� stars. �a� and �b�
correspond to states with E=0 and, respectively, to smallest and largest values of �. In �c� we show the state with largest value of � in the
class C2

7 and E=�3. The increasing value of � stays in close correspondence with the trend to change from localized to extended character.

LOCALIZATION PROPERTIES OF A TIGHT-BINDING… PHYSICAL REVIEW B 78, 214202 �2008�

214202-5



C. Localization properties of the nonuniform model

Let us now discuss the properties of nonuniform model
mentioned in Sec. II, where V�i , j�=1 /z�. Positive values of
� decrease the relative hopping probability from electrons in
the largely connected hubs. So, in principle, we should ex-
pect a decrease in the electron mobility and a tendency for
localized states. The opposite happens for negative values of
�, where the hopping of electrons from the hubs is enhanced,
strengthening the mobility. Since the V�i , j� nonuniformity
destroys the exact scheme based on three well-defined
classes, it is now better to provide an analysis of the average
behavior of the states rather than following them individu-
ally.

Our results are summarized in Fig. 7. For two distinct
values of �= 
1, we qualitatively see, in Figs. 7�a� and 7�b�,
that the dependence of participation ratio � /N with respect to
i /N has been distorted with respect to that of �=0 �Fig. 3�.
Nevertheless, it is still possible to identify the position of the
�=0 highly degenerated C3

n eigenvalues. In order to quantify
the change in the localization properties as function of �, we
draw in Fig. 7�c� the behavior of the average value of the
state slopes ��� with respect to �. The abrupt change in the
average value of ��� at �=3 hints to an extended-localized
transition of the wave function at this value. This behavior is
in accordance with the discussion in the beginning of this
subsection.
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FIG. 5. �Color online� Participation ratio � for some specific states, as a function of N, for generations n=4, 5, 6, and 7. Red �dark gray�
circles and black squares correspond, respectively, to states with large and low values of �. �a� E=0 and �b� E=−�3 correspond to states of
class C3

n. �c� and �d� illustrate localized and extended states belonging classes C1
n and C2

n, respectively.
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FIG. 6. �Color online� �a� Dependence on N of the average participation ratio ��� for generations n=5, 6, 7, and 8. All states with energy
E=0 have been cast into ten groups according to their values of �. The values of the different slopes, drawn in the inset, indicate that most
states are extended. �b� The participation ratio probability distribution P�� /N� of states with E=0, for n=6 �red �dark gray� squares�, 7 �green
�light gray� circles�, and 8 �black triangles�, is largely concentrated on large values of � /N for all n. This is in accordance with �a�.
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D. Anderson transition

In this section we briefly point out the most important
features of the eigenstates that result from introducing disor-
der into the tight-binding model. In this case, the on-site
energy �i is considered as a random independent variable,
describing the local disorder that disturbs the motion of elec-
trons. �i is considered as a variable characterized by a prob-
ability function P��i�=��
 /2− 	�i	� /
, with � being the step
function. The parameter 
 is a measure for the disorder
strength and the main purpose is to identify the possible
existence of a Anderson transition for some finite value of 
.

As observed in the discussion of the nonuniform model,
the introduction of the disorder breaks the high degree of
degeneracy of the C3

n states, as well as the three classes
scheme observed in the energy spectrum of the uniform
model. Thus, we resort again to a discussion of the average
properties of the states as a dependency of the energy inter-
val.

The Anderson transition has been studied taking the aver-
age values of � of the states in a given energy interval 	E	
��E, with �E=0.001. The results are summarized in Table I,
where we present the obtained values of ��� as function of 
.
The results have been obtained by performing M different
realizations of disorder where, respectively, M =1000, 300,
and 50 for n=6, 7, and 8.

The results in Table I can be compared with those ob-
tained for similar models built on complex network struc-
tures. Indeed, Anderson transition investigations on scale-
free networks have shown that the localization of the
electronic states is influenced by the connectivity of the net-

work. Thus, the fractal dimension quantifies the critical
disorder.20,21 Our investigation confirms the possibility of the
absence of an Anderson transition at highly connected net-
works, as observed in Ref. 20.

As discussed in Sec. II, AN is quite distinct from other
well-studied networks.16 Therefore, the current results can
only be compared to those for other connected networks with
some care. A natural way to generate surrogates that are rela-
tively close to AN consists in removing or adding bonds to
AN itself. In fact, we also explored this procedure but no-
ticed that it interferes in a much more drastic way in the
nature of the present states. The addition of this kind of
disorder makes the results much more difficult to be ana-
lyzed then by adding on-site energies..

V. CONCLUSIONS

In this work we presented a very broad investigation of
the properties of the eigenstates of a tight-binding model on

TABLE I. Dependence of the localization parameter � on dis-
order strength 
. For all investigated values of 
, a strong reduction
in the value of � in comparison to the uniform model is noticed,
indicating complete state localization.
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FIG. 7. �Color online� Dependence of �i /N with respect to i /N for n=5 �black dots�, 6 �red �dark gray� dashes�, and 7 �green �light gray�
solid line� when �a� �=1 and �b� �=−1. The states are labeled by increasing values of E. In �c�, we show the dependence of ��� with respect
to �, with a clear indication of a sudden change in the nature of the states for �=3.
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the Apollonian network. We considered the uniform model
and two further model versions, where we could investigate,
respectively, the influence of nonuniformity induced by the
network geometry and by random on-site energies in the
eigenstate properties.

In the regular case, we could establish a precise relation-
ship between the three different classes in which the eigen-
value spectrum can be divided and parity properties of the
corresponding eigenvectors. We have shown that localization
property is not related to the eigenvalue classes, by the iden-
tification of eigenstates, with localized and extended proper-
ties, within each of the classes. However, as the number of
states in the class C3

n increases much faster with n than those
of the other two classes, we proceeded with a quantification
of the average participation ratio of the C3

n states. The results
indicate a scenario in which extended states dominate the
global behavior of the system.

By including an explicit dependence of the node degree
on their ability to decrease or increase the electron mobility,
we have shown that the general state properties can change
from the quoted extended character into a localized one. Our
results were based on the ansatz that the interaction strength
decays with the node degree according to a power law. It was
possible to obtain a positive critical value for the change in
the property of the states.

The model has shown to be much more sensitive to state
localization when random on-site energies are assigned to
each site. Our results suggest that, for any nonzero amount of
randomness, all states, even those in the neighborhood of the
band center, assume localized nature.

As a final comment, we note that intermediate values of
�, i.e., far from the limiting values of 0 and 1 that character-
ize the exponentially localized and uniformly extended states
are also abundant for all of considered models. Such “criti-
cal” states, as referred by other authors,22 usually display
fractal-like properties that distinguish them from the states in
the just described limiting cases.

Physical models constructed on ANs are known to pro-
duce quite unusual properties. These are due mostly on the
existence of large degree nodes as well as with the existence
of large number of loops. Because of this, it is not possible to
affirm that other nonuniform disordered models on AN will
not present other unexpected features.
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